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What Is This Chapter About? 

• We’ll study FEM formulations of 

• deformation of planar trusses 

• bending of beams 

• deformation of frames (as the superposition of planar truss and beam 
formulations) 

• These problems will be studied as 1D, but there will be multiple unknowns at a node. 

• We’ll modify the 1D FEM code to solve these problems. 
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Deformation of a Bar 

• A bar is a structural member that is loaded axially. 

 

 

 

 

• It is either in direct tension or compression. 

• Axial deformation, 𝑢, is governed by the following DE 

−
𝑑

𝑑𝑥
𝐸𝐴
𝑑𝑢

𝑑𝑥
= 0 

solution of which is linear for constant 𝐸 and 𝐴. 

• Even a single linear element can solve this problem exactly. 
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𝐹 
𝐸, 𝐴 

𝑥 



Deformation of a Bar (cont’d) 

• Elemental weak form of the problem is 

 𝐸𝐴
𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
 𝑑𝑥

 

Ω𝑒
 = 𝑤𝐸𝐴

𝑑𝑢

𝑑𝑥
𝑥2
𝑒

𝑄2
𝑒

+ −𝑤𝐸𝐴
𝑑𝑢

𝑑𝑥
𝑥1
𝑒

𝑄1
𝑒

 

• SV of the problem is the axial force :      𝐸𝐴
𝑑𝑢

𝑑𝑥
𝑛𝑥 

• Elemental stiffness matrix is 

 

• Elemental system is 
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𝐾𝑖𝑗
𝑒 =  𝐸𝐴

𝑑𝑆𝑖
𝑑𝜉

1

𝐽𝑒
 
𝑑𝑆𝑗

𝑑𝜉

1

𝐽𝑒
 𝐽𝑒𝑑𝜉

 

Ω𝑒
 

𝐸𝐴

ℎ𝑒
1 −1
−1 1

𝑢1
𝑒

𝑢2
𝑒 =   

𝑄1
𝑒

𝑄2
𝑒  

Elemental force 
vector is zero 



• A truss consists of several bars connected with frictionless pin joints. 

• Note that this is not the actual meaning of truss in civil engineering. 

 

 

 

 

 

 

 

• Each member can only carry axial force, but no shear force or bending moment. 

• All members of a planar truss lie on a 2D plane. Space truss is the 3D version.  

• A truss can be loaded with multiple point forces at its joints. 

• Typically there is at least one fixed joint. 

• Some joints might have restricted motion. 

• Deformations are small, i.e. general shape of the truss is similar before and after 
loading. 

Planar Truss 
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𝐹1 

𝐹2 



• Each member of a truss can be treated as an element of a FE mesh. 

• The elemental system derived previously for a bar is valid for each member. 

• But in order to be able to use it, different coordinate systems aligned with each 
member should be used. These local coordinates are shown below with 𝑥 1 and 𝑥 2. 

Planar Truss – Local Coordinates 
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e=1 

𝑥 1 

𝑄 1
1 

𝑄 2
1 

𝐸𝐴

ℎ1
1 −1
−1 1

𝑢 1
1

𝑢 2
1 =

𝑄 1
1

𝑄 2
1  

Nodal deflections of 
e=1 in 𝑥 1 direction 

Nodal forces of e=1 
in 𝑥 1 direction 

For the 1st member 

1 

2 
e=2 

𝑥 2 

𝑄 1
2 𝑄 2

2 

𝐸𝐴

ℎ2
1 −1
−1 1

𝑢 1
2

𝑢 2
2 =

𝑄 1
2

𝑄 2
2  

Nodal deflections 
of e=2 in 𝑥 2 
direction 

Nodal forces of 
e=2 in 𝑥 2 
direction 

For the 2nd member 

1 2 



• During the assembly of the elemental systems, PVs and SVs written for a common 𝑥𝑦 
coordinate system should be used. 

• For each element a transformation between local 𝑥  coordinate and the global 𝑥𝑦 
coordinates is necessary. 

• This is a purely geometrical transformation. 

Planar Truss – Transformation Matrix 
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𝑢1𝑥
𝑒 = 𝑢 1

𝑒 cos (𝜃𝑒) 

𝑢1𝑦
𝑒 = 𝑢 1

𝑒 sin (𝜃𝑒) 

Multiply the 1st eqn with cos (𝜃𝑒) 
and the 2nd eqn with sin 𝜃𝑒  and 
add them up. 

𝑢1𝑥
𝑒 cos 𝜃𝑒 + 𝑢1𝑦

𝑒 sin 𝜃𝑒 = 𝑢 1
𝑒 cos2 𝜃𝑒 + sin2 𝜃𝑒

1

 

 
𝑢 1
𝑒 = 𝑢1𝑥

𝑒 cos 𝜃𝑒 + 𝑢1𝑦
𝑒 sin 𝜃𝑒  

e 

𝑥 𝑒 

𝑢 1
𝑒 

𝜃𝑒  

𝑄 1
𝑒 

𝑢 2
𝑒 

𝑄 2
𝑒 

𝑥 

𝑦 𝑢1𝑦
𝑒  

𝑢1𝑥
𝑒  𝑄1𝑦

𝑒  

𝑄1𝑥
𝑒  

𝑢2𝑦
𝑒  

𝑢2𝑥
𝑒  

𝑄2𝑦
𝑒  

𝑄2𝑥
𝑒  

1 

2 



• Similary for the 2nd node of element e :     𝑢 2
𝑒 = 𝑢2𝑥

𝑒 cos 𝜃𝑒 + 𝑢2𝑦
𝑒 sin 𝜃𝑒  

• Together these two eqns become 

𝑢 1
𝑒

𝑢 2
𝑒 =
cos (𝜃𝑒) sin(𝜃𝑒) 0 0

0 0 cos (𝜃𝑒) sin(𝜃𝑒)

𝑢1𝑥
𝑒

𝑢1𝑦
𝑒

𝑢2𝑥
𝑒

𝑢2𝑦
𝑒

 

 

 
𝑢 𝑒 = [𝑇𝑒] Δ𝑒  

 

 

 

• A similar eqn  can be written for the SVs too 
 

𝑄 𝑒 = [𝑇𝑒] 𝑄𝑒  
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Transformation matrix, [𝑇𝑒] 

Δ𝑒 includes both 𝑢𝑥
𝑒’s and 𝑢𝑦

𝑒 ’s. 

Each node has 2 unknowns and in 
total one element has 4 unknowns. 

𝑄𝑒 = 𝑄1𝑥
𝑒 𝑄1𝑦

𝑒 𝑄2𝑥
𝑒 𝑄2𝑦

𝑒 𝑇 

Planar Truss – Transformation Matrix (cont’d) 



• [𝑇𝑒] can be used to transform the original 2x2 elemental system into a new 4x4 
elemental system 

 

• Original 2x2 elemental system using bars : 

 

 

 
 

• Using   𝑢 𝑒 = [𝑇𝑒] Δ𝑒    and    𝑄 𝑒 = [𝑇𝑒] 𝑄𝑒  

 
𝐾 𝑒 [𝑇𝑒] Δ𝑒 = [𝑇𝑒] 𝑄𝑒  

 

• Premultiply this eqn by 𝑇𝑒 𝑇 
 

𝑇𝑒 𝑇 𝐾 𝑒 [𝑇𝑒] Δ𝑒 = 𝑇𝑒 𝑇[𝑇𝑒] 𝑄𝑒  
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𝐸𝐴

ℎ𝑒
1 −1
−1 1

𝑢 1
𝑒

𝑢 2
𝑒 =  

𝑄 1
𝑒

𝑄 2
𝑒  

or 
𝐾 𝑒 𝑢 𝑒 = {𝑄 𝑒} 

𝐾𝑒  𝐼  : Identity matrix 

Planar Truss – [𝐾𝑒] Transformation Matrix 



• Transformed 4x4 elemental system :    [𝐾𝑒] Δ𝑒 = 𝑄𝑒  
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𝛼 0
𝛽 0
0 𝛼
0 𝛽

     
𝐸𝐴

ℎ𝑒
1 −1
−1 1

   
𝛼 𝛽 0 0
0 0 𝛼 𝛽

 

𝑇𝑒 𝑇 𝐾 𝑒 𝑇𝑒  

𝐾𝑒 =
𝐸𝐴

ℎ𝑒

𝛼2 𝛼𝛽 −𝛼2 −𝛼𝛽

 𝛽2 −𝛼𝛽 −𝛽2

  𝛼2 𝛼𝛽

sym   𝛽2

 

where    𝛼 = cos(𝜃𝑒)     and      𝛽 = sin(𝜃𝑒) 

Planar Truss – Transformed [𝐾𝑒] 



• Therefore in a planar truss solution elemental systems are 4x4. 

• Each truss member is a linear element with 4 unknows 
 

𝐸𝐴

ℎ𝑒

𝛼2 𝛼𝛽 −𝛼2 −𝛼𝛽

 𝛽2 −𝛼𝛽 −𝛽2

  𝛼2 𝛼𝛽

 sym   𝛽2

Δ1
𝑒

Δ2
𝑒

Δ3
𝑒

Δ4
𝑒

=

𝑄1
𝑒

𝑄2
𝑒

𝑄3
𝑒

𝑄4
𝑒

 

 

 

 

Planar Truss – 4x4 Elemental System 
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e 

𝜃𝑒  

𝑥 

𝑦 
Δ2
𝑒  

Δ1
𝑒  𝑄2

𝑒 

𝑄1
𝑒 

Δ4
𝑒  

Δ3
𝑒  

𝑄4
𝑒 

𝑄3
𝑒 Δ1

𝑒  : Horizontal deflection of point 1 
Δ2
𝑒  : Vertical deflection of point 1 
Δ3
𝑒  : Horizontal deflection of point 2 
Δ4
𝑒  : Vertical deflection of point 2 

 
𝑄1
𝑒 : Horizontal force at point 1 
𝑄2
𝑒 : Vertical force at point 1 
𝑄3
𝑒 : Horizontal force at point 2 
𝑄4
𝑒 : Vertical force at point 2 

𝜃𝑒  is measured CCW 
from the positive 𝑥 
axis. 



• Consider the following truss problem. 

 

 

 

 

 

 

 
• There are 𝑁𝐸 = 3 elements and 𝑁𝑁 = 3 nodes. 

• At each node there are 𝑁𝑁𝑈 = 2 unknown deflections. Totally there are 𝑁𝑈 = 6 
unknowns. 

• 4 of these unknowns are known. Nodes 1 and 2 are fixed. 

• We need to determine 2 deflections (horizontal and vertical) at node 3 and, if desired, 
the reaction forces at nodes 1 and 2. 

Planar Truss – Local to Global Unknown Mapping 
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2𝑃 

𝑃 

1 2 

3 

e=1 

e=2 e=3 



• PVs and SVs of each element are 

 

 

 

 

 

 

 

 
• PVs and SVs of the global system are 

 

• In general the global PVs (and SVs) of 

the 𝑖𝑡ℎ node are numbered as 2𝑖 − 1 

and 2𝑖. 
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1 2 

3 

Δ1, 𝑄1 

Δ2, 𝑄2 

Δ3, 𝑄3 

Δ4, 𝑄4 

Δ5, 𝑄5 

Δ6, 𝑄6 

Δ1
1 , 𝑄1
1 

Δ3
1 , 𝑄3
1 

Δ2
1 , 𝑄2
1 Δ4

1 , 𝑄4
1 

For e=1 

1 2 

Δ1
2, 𝑄1
2 

Δ3
2 , 𝑄3
2 

Δ2
2 , 𝑄2
2 

Δ4
2, 𝑄4
2 

For e=2 

1 

2 

Δ1
3, 𝑄1
3 

Δ3
3 , 𝑄3
3 

Δ2
3 , 𝑄2
3 

Δ4
3 , 𝑄4
3 For e=3 

1 

2 

Planar Truss – Local to Global Unknown Mapping (cont’d) 



• Assembly process is about local-to- global unknown mapping for each element 
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Δ1
 
Δ2
 
Δ3
 
Δ4
 
Δ5
 
Δ6

= Δ         Global unknowns 

Unknowns of e=1 :   Δ1 =

Δ1
1

Δ2
1

Δ3
1

Δ4
1

 

Unknowns of e=2 :   Δ2 =

Δ1
2

Δ2
2

Δ3
2

Δ4
2

 

Unknowns of e=3 :   Δ3 =

Δ1
3

Δ2
3

Δ3
3

Δ4
3

 

Planar Truss – Local to Global Unknown Mapping (cont’d) 



• This graph can also be expressed as a local-to-global mapping matrix 
 

𝐿𝑡𝑜𝐺 =
1 2 3 4
3 4 5 6
1 2 5 6

 

 

• 𝐿𝑡𝑜𝐺𝑖𝑗  gives the global unknown number of the 𝑖𝑡ℎ element’s 𝑗𝑡ℎ local unknown. 

• For example, 𝐿𝑡𝑜𝐺34 = 6 because the 3rd element’s 4th local unknown is the 6th global 
unknown. 
 

The assembly rule can now be defined as 

• 𝐾𝑖𝑗
𝑒  entry of an elemental system  goes to 𝐾𝐼𝐽 entry of the global system. 

• 𝐹𝑖
𝑒 entry of an elemental system goes to 𝐹𝐼 entry of the global system. 

• 𝑄𝑖
𝑒 entry of an elemental system goes to 𝑄𝐼 entry of the global system. 

 

where    𝐼 = 𝐿𝑡𝑜𝐺𝑒𝑖 
𝐽 = 𝐿𝑡𝑜𝐺𝑒𝑗 

Planar Truss – 𝐿𝑡𝑜𝐺 Matrix & Assembly Rule 
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e=1 
e=2 

e=3 



• Using the assembly rule assemble system of the 3-member truss is 

 
𝐾11
1 + 𝐾11

3 𝐾12
1 + 𝐾12

3 𝐾13
1 𝐾14

1 𝐾13
3 𝐾14

3

𝐾21
1 + 𝐾21

3 𝐾22
1 + 𝐾22

3 𝐾23
1 𝐾24

1 𝐾23
3 𝐾24

3

𝐾31
1 𝐾32

1 𝐾33
1 + 𝐾11

2 𝐾34
1 + 𝐾12

2 𝐾13
2 𝐾14

2

𝐾41
1 𝐾42

1 𝐾43
1 + 𝐾21

2 𝐾44
1 + 𝐾22

2 𝐾23
2 𝐾24

2

𝐾31
3 𝐾32

3 𝐾31
2 𝐾32

2 𝐾33
2 + 𝐾33

3 𝐾34
2 + 𝐾34

3

𝐾41
3 𝐾42

3 𝐾41
2 𝐾42

2 𝐾43
2 + 𝐾43

3 𝐾44
2 + 𝐾44

3

Δ1
Δ2
Δ3
Δ4
Δ5
Δ6

=

𝑄1
1 + 𝑄1

3

𝑄2
1 + 𝑄2

3

𝑄3
1 + 𝑄1

2

𝑄4
1 + 𝑄2

2

𝑄3
2 + 𝑄3

3

𝑄4
2 + 𝑄4

3

 

 

 

which only depends on the 𝐿𝑡𝑜𝐺 matrix 

 

• 𝐿𝑡𝑜𝐺 matrix depends on 

• how we number the nodes globally 

• how we number the elements’ nodes locally, i.e. which node is the 1st and which 
one is the 2nd ? 

Planar Truss – Assembly 
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𝐿𝑡𝑜𝐺 =
1 2 3 4
3 4 5 6
1 2 5 6

 



• Consider the following truss problem with 2 point loads. 

• How should we use the points loads? 

• They are used in the boundary term vector. 

• 𝑄  of this problem is 
 

𝑄  =

𝑄1
𝑄2
𝑄3
𝑄4
𝑄5
𝑄6

=

𝑄1
1 + 𝑄1

3

𝑄2
1 + 𝑄2

3

𝑄3
1 + 𝑄1

2

𝑄4
1 + 𝑄2

2

𝑄3
2 + 𝑄3

3

𝑄4
2 + 𝑄4

3

 

 

• If there is no horizontal (or vertical) force at a node, the corresponding SV is set to zero.  

• If there is a given point load at a node, the corresponding SV is set to the given value.  

• At supports SV(s) are unknown and can be calculated during post-processing. 

• Be careful with the direction (sign) of forces. 

Planar Truss – Point Loads 

METU  –  Dept. of Mechanical Engineering  –  ME 413 Int. to Finite Element Analysis  –  Lecture Notes of Dr. Sert 4-17 

2𝑃 

𝑃 

1 2 

3 

e=1 

e=2 e=3 

𝑥 

𝑦 



• For our problem 

• 𝑄1 and 𝑄2 are unknown reaction forces at node 1. 

• 𝑄3 and 𝑄4 are unknown reaction forces at node 2. 

• 𝑄5 = 𝑃 (given horizontal point load at node 3). 

• 𝑄6 = −2𝑃 (given vertical point load at node 3). 

• Therefore the {𝑄} vector is   

𝑄1
𝑄2
𝑄3
𝑄4
𝑃
−2𝑃

 

• 𝑄1, 𝑄2, 𝑄3 and 𝑄4 are not known, but the corresponding Δ1, Δ2, Δ3 and Δ4 are known. 

• If there were no horizontal load at node 3, we should have set 𝑄5 to zero. 

• If there were no vertical load at node 3, we should have set 𝑄6 to zero. 

• If there were a roller support that restricts vertical motion but not horizontal motion, 
we should have set 𝑄4 to zero. 

Planar Truss – Point Loads 
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2𝑃 

𝑃 

1 2 

3 

e=1 

e=2 e=3 

𝑥 

𝑦 



Example 4.1 
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Example 4.1 : Solve the following truss problem. 

• Find the deflection of the nodes. 

• Determine the forces and stresses in each member. 

• Determine the reaction forces at the supports. 

 

𝐸 and 𝐴 values are the same for each member. 

e.g. 

2𝑃 

𝑃 

1 2 

3 

e=1 

e=2 e=3 

𝐿 

𝐿 



Example 4.1 (cont’d) 
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• Elemental system equation is given in slide 2-10. 

• 𝜃 values are necessary and they depend on local node numbering of the nodes 

 

 

 

 

 

 

 

 

 

• 𝜃 values of the elements are :    𝜃1  = 0  ,    𝜃2 = 𝜋/2  ,     𝜃3 = 𝜋/4 

 

• Note : If the local node numbering of all the elements are reversed, 𝜃 values 
change as    𝜃1  = 𝜋  ,    𝜃2 = 3𝜋/2  ,     𝜃3 = 5𝜋/4 

1 2 

3 

e=1 

e=2 
e=3 

1 

2 

1 

2 

1 2 



• Elemental systems are 

 

 

For e=1 : 

 

 

 
 

For e=2 : 

 

 

 
 

For e=3 : 

Example 4.1 (cont’d) 
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𝛼 = cos 𝜃1 = 1 
𝛽 = sin 𝜃1 = 0 
ℎ1 = 𝐿 

𝛼 = cos 𝜃2 = 0 
𝛽 = sin 𝜃2 = 1 
ℎ2 = 𝐿 

𝛼 = cos 𝜃3 = 1/ 2 

𝛽 = sin 𝜃3 = 1/ 2 

ℎ3 = 2𝐿 

→        𝐾1 =
𝐸𝐴

𝐿

1 0 −1 0
 0 0 0
  1 0
   0

 
sym. 

→        𝐾2 =
𝐸𝐴

𝐿

0 0 0 0
 1 0 −1
  0 0
   1

 
sym. 

→        𝐾3 =
𝐸𝐴

2 2𝐿

1 1 −1 −1
 1 −1 −1
  1 1
   1

 
sym. 



• Assembled system is given in slide 4-16. With numbers it becomes 

 

𝐸𝐴

𝐿

1 + 0.3536 0 + 0.3536 −1 0 −0.3536 −0.3536
 0 + 0.3536 0 0 −0.3536 −0.3536
  1 + 0 0 + 0 0 0
   0 + 1 0 −1
 symmetric   0 + 0.3536 0 + 0.3536
     1 + 0.3536

Δ1
Δ2
Δ3
Δ4
Δ5
Δ6

=

𝑄1
𝑄2
𝑄3
𝑄4
𝑃
−2𝑃

 

 

• We know that 
Δ1 = Δ2 = Δ3 = Δ4 = 0 

 

• Reduction can be applied to get the following 2x2 system 

0.3536 0.3536
0.3536 1.3536

∆5
∆6
=
𝑃
−2𝑃

 

• Solving this we get 

∆5= 5.828
𝑃𝐿

𝐸𝐴
    , ∆6= −3

𝑃𝐿

𝐸𝐴
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• To calculate axial forces in each member we can go back to local coordinates aligned 
with the elements. 

 

 

 

 

• From slide 4-9 

𝑄 1
𝑒

𝑄 2
𝑒 =
𝐸𝐴

ℎ𝑒
1 −1
−1 1

𝑢 1
𝑒

𝑢 2
𝑒  

• Using the transformation matrix definition from Slide 4-8 

𝑄 1
𝑒

𝑄 2
𝑒 =
𝐸𝐴

ℎ𝑒
1 −1
−1 1

𝑇𝑒

Δ1
𝑒

Δ2
𝑒

Δ3
𝑒

Δ4
𝑒
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e 

𝑥 𝑒 

𝑄 1
𝑒 

𝑄 2
𝑒 

1 

2 



• Axial forces in each member are 

• For e=1 :     
𝑄 1
1

𝑄 2
1 =

𝐸𝐴

𝐿

1 −1
−1 1

1 0 0 0
0 0 1 0

0
0
0
0

=
0
0

 

• For e=2 :     
𝑄 1
2

𝑄 2
2 =

𝐸𝐴

𝐿

1 −1
−1 1

0 1 0 0
0 0 0 1

0
0

5.828
𝑃𝐿

𝐸𝐴

−3
𝑃𝐿

𝐸𝐴

=
3𝑃
−3𝑃

 

• For e=3 :     
𝑄 1
3

𝑄 2
3 =

𝐸𝐴

2𝐿

1 −1
−1 1

1

2

1 1 0 0
0 0 1 1

0
0

5.828
𝑃𝐿

𝐸𝐴

−3
𝑃𝐿

𝐸𝐴

=
−1.414𝑃
1.414𝑃
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• As seen for each member 
𝑄 1
𝑒 = −𝑄 2

𝑒 

 

i.e. net axial force on each member is zero. 

 

• 1st element carries no axial force, as expected, because its both ends are fixed. 

• 2nd element is in compression because 𝑄 1
2 > 0 (or 𝑄 2

2 < 0). 

• 3rd element is in tension because 𝑄 1
3 < 0 (or 𝑄 2

3 > 0). 

 

Example 4.1 (cont’d) 
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e=2 

1 

2 

𝑄 1
2 > 0 

𝑄 2
2 < 0 

𝑥 2 
e=3 

1 

2 

𝑄 1
3 < 0 

𝑄 2
3 > 0 

𝑥 3 



• Axial stresses in each element can be calculated. 
 

For e=1 :    𝜎1 =
𝑄 2
1

𝐴
= 0 

For e=2 :    𝜎2 =
𝑄 2
2

𝐴
= −3

𝑃

𝐴
  (Negative stress indicates compression) 

For e=3 :    𝜎3 =
𝑄 2
3

𝐴
= 1.414

𝑃

𝐴
  (Positive stress indicates tension) 

 

• Finally forces at the supports can be calculated using the 6x6 system of Slide 4-22. 
 

At node 1 :    𝑄1 =
𝐸𝐴

𝐿
1.3536∆1 + 0.3536∆2 − ∆3 − 0.3536∆5 − 0.3536∆6 = −𝑃 

                              𝑄2 =
𝐸𝐴

𝐿
0.3536∆1 + 0.3536∆2 − 0.3536∆5 − 0.3536∆6 = −𝑃 

At node 2 :    𝑄3 =
𝐸𝐴

𝐿
−∆1 + ∆3 = 0 

                              𝑄4 =
𝐸𝐴

𝐿
∆4 − ∆6 = 3𝑃 

Example 4.1 (cont’d) 
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𝑃 

𝑃 

3𝑃 Forces at the 
supports are the 
opposite of the 
calculated ones 



• Sometimes horizontal and vertical deflections of a node are not independent. 

• This happens at a roller support inclined at an angle to the global 𝑥𝑦 system. 

 

 

 

 

 

 

• At node 𝑖 horizontal and vertical deflections are related to each other. 
 

∆2𝑖−1 sin(𝛼) − ∆2𝑖 cos(𝛼) = 0 

 

 

 
• Details of how to handle these cases can be found in FEM textbooks. 
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𝛼 𝑖 

Horizontal deflection 
of node 𝑖 

Vertical deflection 
of node 𝑖 



• Beams are long, slender structural members, generally subjected to transverse loading 
that produces significant bending effects. 

• Axial deformation or twisting is not considerable for beams. 

 

 

 

 

 

 

 

 
• 𝑞(𝑥) is the distributed transverse loading. 

• 𝐹 is a point transverse load and 𝑀 is a point bending moment. 

• Transverse deflection 𝑣(𝑥) is in the 𝑦 direction. 

Beam Bending 
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𝑞(𝑥) 

𝐿 

𝑥 

𝑦 𝐹 

𝑀 



• The assumption behind the Euler-Bernoulli beam theory is that plane cross sections 
perpendicular to the longitudinal axis of the beam before bending, remain 
perpendicular to the longitudional axis after bending. 

 

 

 

 

 

 
• Governing DE is 

 
 

• 𝑣(𝑥) : Unknown transverse deflection 

• 𝑞(𝑥) : Known distributed transverse load 

• 𝐸𝐼     : Known flexural rigidity of the beam, i.e. product of modulus of elasticity and the  

                  second moment of inertia. 

Euler-Bernoulli Beam Theory 
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𝑥 Before bending :  

After bending :  

𝑑2

𝑑𝑥2
𝐸𝐼
𝑑2𝑣

𝑑𝑥2
= 𝑞 𝑥    , 0 < 𝑥 < 𝐿 



𝑑2

𝑑𝑥2
𝐸𝐼
𝑑2𝑣

𝑑𝑥2
= 𝑞 𝑥    , 0 < 𝑥 < 𝐿 

• This is a 4th order DE. 

• IBP should be applied two times to get the weak form. 

• First IBP gives 

 −
𝑑𝑤

𝑑𝑥
 
𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑑𝑥

 

Ω𝑒
=  𝑤𝑞 𝑑𝑥
 

Ω𝑒
+ −𝑤

𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑥2
𝑒

+ 𝑤
𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑥1
𝑒

 

• Second IBP gives 

 
𝑑2𝑤

𝑑𝑥2
𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑑𝑥

 

Ω𝑒
=  𝑤𝑞 𝑑𝑥
 

Ω𝑒
+ 

 

+ −𝑤
𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑥2
𝑒

+ 𝑤
𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑥1
𝑒

+
𝑑𝑤

𝑑𝑥
𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑥2
𝑒

+ −
𝑑𝑤

𝑑𝑥
𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑥1
𝑒
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• There are two PVs 
Transverse deflection :   𝑣 

Slope :                                
𝑑𝑣

𝑑𝑥
 

 

• There are two SVs 

Shear force :                    
𝑑

𝑑𝑥
𝐸𝐼
𝑑2𝑣

𝑑𝑥2
 

Bending moment :          𝐸𝐼
𝑑2𝑣

𝑑𝑥2
 

 

• Sign conventions are 

• Deflection in +𝑦 direction (upward) is positive. 

• CCW rotation of the beam corresponds to positive slope. 

• Shear force in +𝑦 direction (upward) is positive. 

• CCW moment (in +𝑧 direction) is positive. 

Euler-Bernoulli Beam Theory (cont’d) 
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• 2 node beam element has 4 PVs and 4 SVs 

Two  Node Beam Element 
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2 1 e 

Δ1
𝑒  

Δ2
𝑒  

Δ3
𝑒  

Δ4
𝑒  Δ𝑒 =

Δ1
𝑒

Δ2
𝑒

Δ3
𝑒

Δ4
𝑒

 

Transverse deflection at node 1 

Transverse deflection at node 2 

Slope at node 1 

Slope at node 2 

2 1 e 

𝑄1
𝑒 

𝑄2
𝑒 

𝑄3
𝑒 

𝑄4
𝑒 𝑄𝑒 =

𝑄1
𝑒

𝑄2
𝑒

𝑄3
𝑒

𝑄4
𝑒

 

Shear force at node 1 

Shear force at node 2 

Bending moment at node 1 

Bending moment at node 2 



• Weak form of the problem contains 2nd derivative of the transverse deflection. 

• Not only the transverse deflection, but also its first derivative, i.e. slope should be 
continuous, because slope is a PV too. 

• Over each element FE solution is 

𝑣𝑒 = 𝑆𝑗  Δ𝑗
𝑒

4

𝑗=1

 

• A 𝐶0 continuous solution for Δ𝑒 is NOT enough. It should be at least 𝐶1 continuous. 

 

• Lagrange type shape functions used previously are not suitable. 

• Hermite type shape functions should be used. 

Hermite Type Shape Functions 
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• Over each beam element there are 4 unknowns. 

• Continuity of two variables (𝑣 and 𝑑𝑣/𝑑𝑥) at two ends of an element results in 4 
conditions to be satisfied. 

• To satisfy these 4 conditions at least a cubic polynomial is necessary for 𝑣𝑒. 

 
𝑣𝑒 = 𝐴 + 𝐵𝜉 + 𝐶𝜉2 + 𝐷𝜉3 

 

• Four continuity restrictions are 

 
At  𝜉 = −1 ∶    𝑣𝑒 = Δ1

𝑒  
 

At  𝜉 = −1 ∶   
𝑑𝑣𝑒

𝑑𝑥
= Δ2
𝑒       →      

𝑑𝑣𝑒

𝑑𝜉

1

𝐽𝑒
= Δ2
𝑒  

 

At  𝜉 = +1 ∶    𝑣𝑒 = Δ3
𝑒  

 

At  𝜉 = +1 ∶   
𝑑𝑣𝑒

𝑑𝑥
= Δ4
𝑒       →      

𝑑𝑣𝑒

𝑑𝜉

1

𝐽𝑒
= Δ4
𝑒  

 

Hermite Type Shape Functions (cont’d) 
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• Using 𝐽𝑒 these 4 conditions become 

Δ1
𝑒 = 𝐴 − 𝐵 + 𝐶 − 𝐷 

Δ2
𝑒 = 𝐵 − 2𝐶 + 3𝐷

2

ℎ𝑒
 

Δ3
𝑒 = 𝐴 + 𝐵 + 𝐶 + 𝐷 

Δ4
𝑒 = 𝐵 + 2𝐶 + 3𝐷

2

ℎ𝑒
 

 

• Solve for 𝐴, 𝐵, 𝐶 and 𝐷 in terms of Δ1
𝑒 , Δ2
𝑒 , Δ3
𝑒  and Δ4

𝑒 . 

• Substitute them into the following equation 

 𝑆𝑗  Δ𝑗
𝑒

4

𝑗=1

   =    𝐴 + 𝐵𝜉 + 𝐶𝜉2 + 𝐷𝜉3 

 

 

• And identify the 4 Hermite type cubic shape functions. 

Hermite Type Shape Functions (cont’d) 
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𝑣𝑒 𝑣𝑒 



• Hermite type cubic shape functions are 

𝑆1 =
1

4
 𝜉3 − 3𝜉 + 2  

𝑆2 =
ℎ𝑒 

8
𝜉3 − 𝜉2 − 𝜉 + 1  

𝑆3 =
1

4
 −𝜉3 + 3𝜉 + 2  

𝑆4 =
ℎ𝑒 

8
𝜉3 + 𝜉2 − 𝜉 − 1  
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-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15𝑆1 𝑆3 𝑆2/ℎ
𝑒  

𝑆4/ℎ
𝑒  



• From Slide 4-30, elemental stiffness matrix and force vector are 
 

𝐾𝑖𝑗
𝑒 =  𝐸𝐼

𝑑2𝑆𝑖
𝑑𝜉2
1

𝐽𝑒

2
𝑑2𝑆𝑗

𝑑𝜉2
1

𝐽𝑒

2

𝐽𝑒𝑑𝜉
1

−1

 

 

𝐹𝑖
𝑒 =  𝑞 𝑆𝑖  𝐽

𝑒𝑑𝜉
1

−1

 

 

• Evaluating these using Hermite type shape functions 

2𝐸𝐼

(ℎ𝑒)3

6 3ℎ𝑒 −6 3ℎ𝑒

 2 ℎ𝑒 2 −3ℎ𝑒 ℎ𝑒 2

  6 −3ℎ𝑒

 sym   2 ℎ𝑒 2

Δ1
𝑒

Δ2
𝑒

Δ3
𝑒

Δ4
𝑒

=
𝑞ℎ𝑒

12

6
ℎ𝑒

6
−ℎ𝑒

+

𝑄1
𝑒

𝑄2
𝑒

𝑄3
𝑒

𝑄4
𝑒
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𝐾𝑒 𝐹𝑒 

𝑞 is the part of the 
distributed transverse 
load, simplified as 
uniform over element e 
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Example 4.2 : For the following clamped beam with 𝐸𝐼 = 4 × 106 Nm, use two  
equal length elements to determine 

• the transverse deflection of the tip 

• the reaction force at the middle support. 

e.g. 

𝑞 = 400 N/m 

5 m 5 m 



• 𝐸𝐼, ℎ𝑒 and 𝑞 are the same for both elements. 

• 𝐾𝑒 and 𝐹𝑒 will be the same for both elements. 

• There are four unknowns for each element. 

 

 

 

 

 

 

• Overall there are 3 nodes and 6 unknowns 

Example 4-2 (cont’d) 
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2 1 e=1 

Δ1
1  

Δ2
1  

Δ3
1  

Δ4
1  

2 1 e=2 

Δ1
2 

Δ2
2  

Δ3
2  

Δ4
2  

2 1 

e=1 

Δ1 

Δ2 

Δ3 

Δ4 

3 

Δ5 

Δ6 
e=2 



• Local-to-global mapping of the unknowns are as follows 

Example 4-2 (cont’d) 
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Δ1
 
Δ2
 
Δ3
 
Δ4
 
Δ5
 
Δ6

= Δ      Global unknowns 

Unknowns of e=1 :   Δ1 =

Δ1
1

Δ2
1

Δ3
1

Δ4
1

 

Unknowns of e=2 :   Δ2 =

Δ1
2

Δ2
2

Δ3
2

Δ4
2

 

𝐿𝑡𝑜𝐺 =
1 2 3 4
3 4 5 6

 



• Assembled system is 

 

2𝐸𝐼

(ℎ𝑒)3

6 3ℎ𝑒 −6 3ℎ𝑒 0 0
3ℎ𝑒 2(ℎ𝑒)2 −3ℎ𝑒 (ℎ𝑒)2 0 0

−6 −3ℎ𝑒 6 + 6 −3ℎ𝑒 + 3ℎ𝑒 −6 3ℎ𝑒

3ℎ𝑒 (ℎ𝑒)2 −3ℎ𝑒 + 3ℎ𝑒 2(ℎ𝑒)2+2(ℎ𝑒)2 −3ℎ𝑒 (ℎ𝑒)2

0 0 −6 −3ℎ𝑒 6 −3ℎ𝑒

0 0 3ℎ𝑒 (ℎ𝑒)2 −3ℎ𝑒 2(ℎ𝑒)2

Δ1
Δ2
Δ3
Δ4
Δ5
Δ6

 

 

=
𝑞ℎ𝑒

12

6
ℎ𝑒

6 + 6
−ℎ𝑒 + ℎ𝑒

6
−ℎ𝑒

+

𝑄1
1

𝑄2
1

𝑄3
1 + 𝑄1

2

𝑄4
1 + 𝑄2

2

𝑄3
2

𝑄4
2
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• Boundary conditions need to be applied. 

 

• Known deflections and slopes are EBCs. 

• At the clamped end, transverse deflection and slope are zero. 

Δ1 = 0,   Δ2 = 0 

• At the middle support transverse deflection is zero. 

Δ3 = 0 
 

• Known shear forces and moments are NBCs. 

• Middle support can not carry any bending moment 

𝑄4 = 𝑄4
1 + 𝑄2

2 = 0 

• Free end can not cary and shear force or bending moment 

𝑄5 = 0   ,     𝑄6 = 0 

 

 

 

Example 4-2 (cont’d) 
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• Only 3 PVs (Δ4, Δ5, Δ6) are actually unknown. 

• Reduction can be applied to the original 6x6 system. 

 

2𝐸𝐼

ℎ𝑒3

4ℎ𝑒
2
−3ℎ𝑒 ℎ𝑒

2

−3ℎ𝑒 6 −3ℎ𝑒

ℎ𝑒
2
−3ℎ𝑒 2ℎ𝑒

2

Δ4
Δ5
Δ6

=
𝑞ℎ𝑒

12

0
6
−ℎ𝑒
+
0
0
0

 

 
• Using  𝐸𝐼 = 4 × 106 Nm ,  ℎ𝑒 = 5 m ,  𝑞 = −400 N/m 

 

 

• Unknown PVs are calculated as 

 
∆4= −0.00130 rad
∆5= −0.01432 m   
∆6= −0.00339 rad

 

 

Example 4-2 (cont’d) 
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𝑞 is in – 𝑦 direction 

Slope at the middle support. Beam rotation is CW. 

Transverse deflection at the tip. It is downward. 

Slope at the tip. Beam rotation is CW. 

𝐹  is not changed 
because ∆1= ∆2= ∆3= 0 



• To find the unknown SVs we can use the calculated PVs in the original 6x6 system. 

• Unknown SVs can be calculated as 

 
𝑄1 = −250 N      
𝑄2 = −1250 Nm
𝑄3 = 4250 N       

 

 

Example 4-2 (cont’d) 

METU  –  Dept. of Mechanical Engineering  –  ME 413 Int. to Finite Element Analysis  –  Lecture Notes of Dr. Sert 4-44 

Force applied by the wall at the clamped end. 

Moment applied by the wall at the clamped end. 

Force acting by the middle support. 

4250 N  

250 N  

1250 Nm 

400 N/m 



Example 4-3 
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Example 4.3 : Solve the same problem, but this time remove the distributed load 
and put a point load at the tip 

 

 

 

 

 

 

 

 

• One detail you need to pay attention is that this time 

𝑄5 = −4000 

e.g. 

4000 N 

5 m 5 m 



• Frames look like trusses, but the connections are rigid, i.e. welded or riveted. 

• Each member can carry axial force, shear force and bending moment. 

 

 

 

 

 

 

 

 

 

• The above bicycle frame has 7 members. 

• Each member can be modeled as a single element or multiple elements. 

• It is possible to think of a frame element as the superposition of truss and beam 
elements. 

Planar Frames 
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𝐹1 𝐹2 

𝑥 

𝑦 

𝐹1 𝐹2 



• Frame elements are  based on arbitrarily oriented beam elements. 

• Similar to a truss element, it is possible to study the beam element using either the 
local 𝑥 𝑒, 𝑦 𝑒 coordinates or the global 𝑥, 𝑦 coordinates. 

 

Arbitrarily Oriented Beam Element 
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𝑥 

𝑦 

e 
Δ2
𝑒  
Δ1
𝑒  

Δ6
𝑒  

1 

2 
Δ3
𝑒  

Δ5
𝑒  

Δ4
𝑒  

e 

𝜃𝑒  
Δ 2
𝑒  

Δ 1
𝑒  

Δ 4
𝑒  

Δ 3
𝑒  

𝑥 𝑒 

1 

2 

𝑦 𝑒 

Unknowns in local coordinates 

Node 1 : Δ 1
𝑒  , Δ 2
𝑒  

Node 2 : Δ 3
𝑒  , Δ 3
𝑒  

Unknowns in global coordinates 

Node 1 : Δ1
𝑒  , Δ2
𝑒  , Δ3
𝑒  

Node 2 : Δ4
𝑒  , Δ5
𝑒  , Δ6
𝑒  



• Relation between local and global unknowns are 

Δ 1
𝑒 = −sin 𝜃𝑒 Δ1

𝑒 + cos(𝜃𝑒) Δ2
𝑒   

Δ 2
𝑒 = Δ3

𝑒   

Δ 3
𝑒 = −sin 𝜃𝑒 Δ4

𝑒 + cos(𝜃𝑒) Δ5
𝑒   

Δ 4
𝑒 = Δ6

𝑒   

 

• These relations can be expressed using the following transformation matrix. 

Δ 1
𝑒

Δ 2
𝑒

Δ 3
𝑒

Δ 4
𝑒

=

−𝛽 𝛼 0 0 0 0
0 0 1 0 0 0
0 0 0 −𝛽 𝛼 0
0 0 0 0 0 1

Δ1
𝑒

Δ2
𝑒

Δ3
𝑒

Δ4
𝑒

Δ5
𝑒

Δ6
𝑒

 

 

where    𝛼 = cos(𝜃𝑒)     and      𝛽 = sin(𝜃𝑒) 

 

Transformation Matrix of a Beam Element 
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Transformation 
matrix of the beam 
element 



• We now have transformation matrices for arbitrarily oriented beam and truss 
elements.  

• Frame elements carry axial force, shear force and bending moment. 

• They can be obtained by the superposition of beam and truss elements. 

• Frame element has 3 unknowns at each node. 

Frame Element 
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e 

𝜃𝑒  
Δ 3
𝑒  

Δ 2
𝑒  Δ 6

𝑒  

Δ 5
𝑒  

𝑥 𝑒 

1 

2 

𝑦 𝑒 

Δ 1
𝑒  

Δ 4
𝑒  

e 

Δ3
𝑒  

Δ2
𝑒  Δ6

𝑒  

Δ5
𝑒  

𝑥 
1 

2 

𝑦 

Δ1
𝑒  

Δ4
𝑒  

Frame element in 
local coordinates  

Frame element in 
global coordinates  



• Elemental system of the frame element in local unknowns is obtained by the proper 
combination of those of truss and beam elements 

𝐾 𝑒 Δ 𝑒 = 𝐹𝑒  

 

  

𝐸𝐴

ℎ𝑒
0 0

−𝐸𝐴

ℎ𝑒
0 0

 
12𝐸𝐼

ℎ𝑒 3
6𝐸𝐼

ℎ𝑒 2
0
−12𝐸𝐼

ℎ𝑒 3
6𝐸𝐼

ℎ𝑒 2

  
4𝐸𝐼

ℎ𝑒
0
−6𝐸𝐼

ℎ𝑒 2
2𝐸𝐼

ℎ𝑒

   
𝐸𝐴

ℎ𝑒
0 0

    
12𝐸𝐼

ℎ𝑒 3
−6𝐸𝐼

ℎ𝑒 2

     
4𝐸𝐼

ℎ𝑒

  

Δ 1
𝑒

Δ 2
𝑒

Δ 3
𝑒

Δ 4
𝑒

Δ 5
𝑒

Δ 6
𝑒

=

0
𝑞ℎ𝑒

2
𝑞 ℎ𝑒 2

12
0
𝑞ℎ𝑒

2
−𝑞 ℎ𝑒 2

12

 

 

 

Frame Element (cont’d) 
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These are coming from 
𝐾 𝑒  of the truss 

element (Slide 4-9)  

The rest is coming from 
𝐾 𝑒  of the beam 

element (Slide 4-37)  

𝑞 is the constant 
distributed 
transverse load 

𝐾 𝑒  

{𝐹 𝑒} 

Symmetric 



• Similarly transformation matrix of the frame element is obtained by the proper 
combination of those of truss and beam elements 

 
Δ 1
𝑒

Δ 2
𝑒

Δ 3
𝑒

Δ 4
𝑒

Δ 5
𝑒

Δ 6
𝑒

=  

𝛼 𝛽 0 0 0 0
−𝛽 𝛼 0 0 0 0
0 0 1 0 0 0
0 0 0 𝛼 𝛽 0
0 0 0 −𝛽 𝛼 0
0 0 0 0 0 1

  

Δ1
𝑒

Δ2
𝑒

Δ3
𝑒

Δ4
𝑒

Δ5
𝑒

Δ6
𝑒

 

 

 

• Elemental system in global unknowns is obtained as 

𝐾𝑒 Δ𝑒 = {𝐹𝑒} 

Frame Element (cont’d) 
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These 2 eqns are coming 
from the transformation 
matrix of the truss element 
(Slide 4-8) 

Remaining 4 eqns are 
coming from the 
transformation matrix of the 
beam element (Slide 4-48) 

𝑇𝑒  

𝐾𝑒 = 𝑇𝑒 𝑇 𝐾 𝑒 𝑇𝑒  {𝐹𝑒} = 𝑇𝑒 𝑇{𝐹 𝑒} 



Example 4-3 
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Example 4.3 : Using three elements, determine the deflections and rotations at 
the joints of the following frame. Draw bending moment and shear force diagrams 
for all elements. Calculate the reactions at the supports. 

 

For all members  𝐸 = 200 GPa  ,   𝐼 = 2.7 × 10−6 m4  ,    𝐴 = 4.4 × 10−4 m2 

e.g. 

𝑞 = 7.5 kN/m 

3.5 m 

2.5 m 

15 kN 



• Element and global/local node numbering are shown below. 

 

 

 

 

 

 

 

 

• Orientation of the elements are 

𝜃1 = 𝜋/2  ,   𝜃2 = 𝜋/2  ,   𝜃3 = 0 

• Element lengths are 

ℎ1 = 2.5  ,   ℎ2 = 2.5  ,   ℎ3 = 3.5 

• 𝐸, 𝐼 and 𝐴 are the same for all elements. 

 

 

Example 4-3 (cont’d) 
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1 

2 3 

4 1 

e=1 

e=3 

e=2 e=1 

2 

1 

e=2 

2 

1 2 e=3 



• Using Slide 4-50 calculate [𝐾 𝑒] and {𝐹 𝑒} for each element 

 

 

 

• For e=1:     𝐾 1 = 106 

 

 
 

𝐹 1 = 0  0  0  0  0  0 𝑇   (all zero because 𝑞 = 0 for e=1) 

 

 

• For e=2:     𝐾 2 = 𝐾 1    (because 𝐸, 𝐴, 𝐼 and ℎ are the same for both elements) 

 

𝐹 2 = 𝐹 1       (because 𝑞 = 0 for e=2, too) 

 

Example 4-3 (cont’d) 
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• For e=3:     𝐾 3 = 106 

 

 

 

 
𝐹 3 = 104 

Example 4-3 (cont’d) 
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• Now the transformation matrices for each element need to be calculated using Slide  
4-51. 

• For e=1:     𝑇1 =  

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 1

   

 

• For e=2:     𝑇2 = 𝑇1    (because 𝜃2 = 𝜃1) 
 

• For e=3:     𝑇3 =  

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

        (This is the unity matrix because 𝑥 3 = 𝑥) 

Example 4-3 (cont’d) 
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• [𝐾𝑒] and {𝐹𝑒} of each element can be calculated using 
 

𝐾𝑒 = 𝑇𝑒 𝑇 𝐾 𝑒 𝑇𝑒    and      {𝐹𝑒} = 𝑇𝑒 𝑇{𝐹 𝑒} 
 
 
 

• For e=1:    𝐾1 = 106 

 

 

 
𝐹1 = 0  0  0  0  0  0  

 

• For e=2:     𝐾2 = 𝐾1     ,     𝐹2 = 𝐹1  

 

• For e=3:     𝐾3 = 𝐾 3     ,     {𝐹3} = {𝐹 3} 

 

Example 4-3 (cont’d) 
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• Now we have three 6x6 elemental systems. 

• Let’s assemble them into the 12x12 global system. 

• LtoG mapping is as follows 
 

𝐿𝑡𝑜𝐺 =
1 2 3 4 5 6
10 11 12 7 8 9
4 5 6 7 8 9

 

Example 4-3 (cont’d) 

1 

2 3 

4 

Δ1
1 , Δ2
1 , Δ3
1  

e=1 

e=3 

e=2 e=1 

2 

1 

e=2 

2 

1 2 e=3 

1 

Δ4
1 , Δ5
1 , Δ6
1  

Δ1
2, Δ2
2 , Δ3
2  

Δ4
2, Δ5
2, Δ6
2  

Δ1
3, Δ2
3 , Δ3
3  Δ4

3 , Δ5
3 , Δ6
3  

Δ1, Δ2, Δ3 Δ10, Δ11, Δ12 

Δ4, Δ5, Δ6 Δ7, Δ8, Δ9 
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• Assembled global system is 12x12. 

• At nodes 1 and 4 all three unknowns are known and they are zero. 

∆1= ∆2= ∆3= 0   ,    ∆10= ∆11= ∆12=0 

 

106                                                                                                                     

Δ4
Δ5
Δ6
Δ7
Δ8
Δ9

 

 

= 104                     +  

15000
0
0
0
0
0

  

Example 4-3 (cont’d) 

𝑄4 is the given 
horizontal 
point load at 
node 2 

𝑄5 and 𝑄6 are zero because there is no 
vertical point load or point moment at node 2 

𝑄7, 𝑄8 and 𝑄9 are zero because there is no 
horizontal or vertical point load or point 
moment at node 3. 
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• Solving for the unknown deflecions we get 

 

 

Δ4
Δ5
Δ6
Δ7
Δ8
Δ9

= 

 

• Both nodes 2 and 3 move in +𝑥 and −𝑦 directions. Also they rotate CW. 

 

 

• Now the forces and moments at the supports (𝑄1, 𝑄2, 𝑄3, 𝑄10, 𝑄11, 𝑄12) can be calculated. 

 

• Also axial stress, shear stress and bending stress over each element can be determined. 

 

• Question : Will the solution improve by using more elements? 

Example 4-3 (cont’d) 

Horizontal deflection, vertical 
deflection and rotation of node 2 

Horizontal deflection, vertical 
deflection and rotation of node 3 
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